Annals of Operations Research 50(1994)239-261

1.

Applications and algorithms

Bernard T. Han?, George Diehr® and Jack S. Cook®

“)Department of Management and Systems, College of Business and Economics,

Washington State University, Pullman, WA 99164-4726, USA

biCenter for High Technology Management, College of Business Administration,

California State University, San Marcos, CA 92096, USA

Geneseo, NY 14454, USA

In this paper we consider a class of bin selection and packing problems (BPP) in
which potential bins are of various types, have two resource constraints, and the resource
requirement for each object differs for each bin type. The problem is to select bins and
assign the objects to bins so as to minimize the sum of bin costs while meeting the two
resource constraints. This problem represents an extension of the classical two-dimensional
BPP in which bins are homogeneous. Typical applications of this research include
computer storage device selection with file assignment, robot selection with work station
assignment, and computer processor selection with task assignment. Three solution
algorithms have been developed and tested: a simple greedy heuristic, a method based
on simulated annealing (SA) and an exact algorithm based on Column Generation with
Branch and Bound (CG). An LP-based method for generating tight lower bounds was
also developed (LB). Several hundred test problems based on computer storage device
selection and file assignment were generated and solved. The heuristic solved problems
up to 100 objects in less than a second; average solution value was within about 3%
of the optimum. SA improved solutions to an average gap of less than 1% but a
significant increase in computing time. LB produced average lower bounds within 3%
of optimum within a few seconds. CG is practical for small to moderately-sized problems
— possibly as many as 50 objects.

Introduction

239

Multiple-type, two-dimensional bin packing problems:

<) Jones School of Business, 1 College Circle, State University of New York — Geneseo,

In the classical two-dimensional bin packing problem, we are given a set of
objects each of which has two resource requirements. The problem is to select the
minimum number of bins which will support a packing of the objects without
violating the resource constraints. Bins are homogeneous—each has the same two
resource capacities. Brief literature review for BPP appears in section 2.
The problems we consider differ from the classical problems in two important
ways. First, the potential bins are not homogeneous. Their resource capacities differ

© J.C. Baltzer AG, Science Publishers

240 B.T. Han et al., Bin packing problems

and their costs differ. Second, the resource demands of an object on a bin of one type
typically differ from its demands on a bin of another type. We refer to this problem
as the multi-type two-dimensional bin packing problem (M2BP). Examples follow.

COMPUTER PROCESSOR SELECTION WITH JOB ASSIGNMENT

Consider a finite number of real-time computer jobs which are to be assigned
to a group of processors. The jobs must all run simultaneously and, for efficiency
(e.g. fast response time) all must be memory-resident at all times. Each processor
has processing and memory resource constraints, and each job is characterized by
its resource demands for CPU time and memory which, in general, are different for
each type of processor. The problem is to select a minimum cost mix of processors
and make a feasible job assignment.

ROBOT SELECTION WITH WORKSTATION ASSIGNMENT

Consider workplace layout for an automated manufacturing system in which
a number of workstations is to be served by a number of different types of robots.
Each robot is constrained by its available processing time and work envelope, and
each workstation has a known processing time demand and space requirement for
each type of robot [4]. The problem is to find a minimum cost mix of robots and
assign each workstation to a single robot within the resource constraints [17, 44].

FILE PLACEMENT FOR A MULTI-DEVICE STORAGE SYSTEM

Consider a computer system in which several types of on-line storage devices
are being considered (e.g. conventional magnetic disks, various optical devices, and
various tape-based systems) for storage of a number of files. Each device is constrained
by its I/O and storage capacities, and each file has a known I/O load (i.e. device
time) and file size for each device type. The problem is to minimize total cost by
selecting a mix of devices and assigning files to devices such that the files on each
device do not violate either the space or I/O capacity of the device [32: 33,

Such problems are becoming more common as information system users ranging
from executives and decision support staff to conventional transaction processing
applications demand on-line access to increasingly large volumes of data [35,42].
The common solution is to select a hierarchy of storage devices ranging from slow
access tape devices for data which is used only infrequently to central memory for
data which requires micro-second access. While the size and access characteristics
of some files will dictate the appropriate device, in many cases the optimum choice
of storage devices and appropriate assignment of files to devices is not obvious.
While a moderately fast device (e.g. optical disk) may have the space to store a
particular set of files, and be able to provide adequate response time for a subset of
the files, in the aggregate the retrieval and update requirements may swamp the device.
The alternative of moving all files to a faster magnetic disk may increase costs.

B.T. Han et al., Bin packing problems 241

The “bins” in this problem are clearly heterogeneous—storage capacities of
various devices range from hundreds of megabytes for conventional magnetic disks
to terabytes for devices such as optical jukeboxes. The performance capacity—e.g.
random access time—also varies widely across these devices: magnetic disks have
access times of milliseconds and can support files used in intensive real-time
applications; optical jukeboxes, on the other hand, require several seconds to load
the selected disk and access a record. Thus, the resource requirements of a given
file are clearly not the same for each device type. Even the storage space required
by a file is not constant across device types due to the different file structures which
different devices dictate.

Our research objective was to develop computer algorithms which can solve
M2BP problems of a practical size with acceptable computation times and provide
optimum solutions or near-optimum solutions with sharp lower bounds. We have
developed three solution algorithms and a lower-bounding scheme. One solution
algorithm is a simple greedy heuristic which uses an opportunity cost concept to
select new bins and assign objects to bins. This algorithm is also used as a front-
end to the other methods. A second approximation method uses a global search
technique based on simulated annealing. The third solution method is based on
column generation [26—28] combined with branch-and-bound. The lower bounding
(LB) scheme relies on a feasible solution from the heuristic to generate a set of
potential bin configurations, then assigns objects to bins using linear programming.
The result is a lower bound. The algorithms were evaluated by solving randomly
generated problems which are based on realistic applications from the storage device
selection-file assignment domain.

The remainder of the paper is organized as follows. Section 2 is a literature
review. Section 3 presents mathematical formulations of the problem required for
the CG method. Section 4 describes the algorithms. Computational results are presented
in section 5 with summary and concluding remarks in section 6.

2 Review of literature

The conventional one-dimensional bin packing problem (BPP) is to find the
minimum number of bins each of size 1 to pack a given collection of items with
sizes in (0, 1] such that the sum of the sizes of all items packed into any given bin
does not exceed 1 [36]. BPP is a well-known NP-hard problem [3]. In general,
algorithms reported in the literature can be classified into two major types: those
designed for on-line versus off-line applications. On-line algorithms are designed to
pack a group of objects as they are presented, in contrast, off-line algorithms are
given the full set of objects which are then packed in any order. Either type of
algorithm has real world applications [7]. Recent reported research on off-line
problem include Kampke [39] who used simulated annealing and Glover and Hubscher
[30] who used tabu search.

242 B.T. Han et al.,, Bin packing problems

An extension to the one-dimensional problem is the two-dimensional BPP
which has also been extensively studied over the past two decades. The most
comprehensive review of BPP appears in Coffman et al. [16]. One of the most
recent reviews is by Dowsland and Dowsland [20].

For the two-dimensional BPP, two specific ways of packing are considered.
The first way, called box-packing, is to treat the bin packing process as assigning
rectangles (i.e. two-dimensional objects) into an open-ended bin which has a unit
width and an infinite height. During the packing process, object rotation may or
may not be allowed [6]. However, the common objective is to minimize the height
of this open-ended bin. The second way, called vector-packing, is to treat each
object and bin as a two-dimensional normalized vector, and the packing goal is to
minimize the use of bins such that all objects packed into a bin have normalized
component-wise sums < 1. Our problem is of this second class. As discussed by
Coffman et al. [16], each method of packing represents several realistic applications.

Many studies have been conducted on two-dimensional BPP with homogeneous
bins. Most of these studies present approximation algorithms and their average or
worst case performance analysis: Garey et al. [23], Yao [49], Baker et al. [5, 6],
Coffman et al. [15], Hofri [34], Golan [31], Fernandez de la Vega and Lueker [22],
Brown et al. [11], Chung et al. [12], Karmarkar and Karp [40], Baker and Schwarz
[7], Chazelle [13], Bartholdi et al. [9], Coppersmith and Raghavan [18], and Rhee
and Talagrand [43].

None of these methods is directly applicable to the M2BP problems addressed
here— i.e. BPP with two resource constraints, heterogeneous bins, and object resource
requirements which depend on bin type. In the next section we formally define the
problem.

3. Problem definition and formulation

A definition of the M2BP problem is:

We are given N, 2-dimensional objects, each of which has “size” (pi, giz),
where pj, and g, represent the two-dimensional resource demands of
an object i on a bin of type k. There are K different bin types, numbered
1 to K; a type k bin has a two-dimensional resource constraint (P, Q),
and incurs a fixed charge, Fy, if selected. The problem is to select bins
and pack all objects into these bins such that the total costs is minimized
and the resource constraints are met.

Additional notation follows:

F : the index set for the collection of objects, $ ={1,2,3,..., N}
K : the index set for all bin types, ¥ = {1,2,...,K}.

Pik = pir/Py : the normalized dimension-1 resource demand of object i on bin type
k,ic® kel

B.T. Han et al., Bin packing problems 243

Git = qix/Qx : the normalized dimension-2 resource demand of object i on bin type

k,ic% ke
H1y, : an upper bound on the number of type k bins in an optimal solution.
Fr : the index set for each type k bin where $, = {1,2,...,m.}, k€.

1 if the jth bin of type k is used;
Yik 0 otherwise.

{ 1 if the object i is packed into the jth bin of type k;
Xijk +

0 otherwise.

The optimization problem is:

(M2BP) minimize Z=) Fk(Zyjk}

keX JEd:

subject to ¥ Yoy =1 Vied, (3.1)
ke¥ je¥,
z Xijk Pik < yﬂ(V_] Egk, Vk e 3{, (32)
ie$
Z Xik ik < Yik VJ Egk’ Yk e 3‘{, (33)
icy
Xijks Yk € {0, 1}, Vie 5‘, V_] Egk,Vk e H.

Constraint (3.1) ensures that each object is packed into exactly one bin. Constraints
(3.2) and (3.3) ensure that bin capacities are not exceeded.

The formulation is a pure integer programming problem. Since it is a
generalization of the 2-dimensional BPP with homogeneous bins, it is clearly NP-
hard [5]. To our knowledge, no exact optimization algorithm has been developed
for M2BP.

Potential exact algorithms for M2BP include methods based on Lagrangian
relaxation [21,25], branch and bound, and column generation [26—28]. Experience
reported by other researchers on similar or simpler problems suggests that none of
these methods would be acceptable for problems of 100+ objects [19]. Nevertheless,
we needed an exact method to assist in validating the performance of our approximate
methods and the lower-bounding method. CG was selected over other potential
exact methods for the very practical reason that we had developed a CG-based
method for a similar problem and its performance was at least acceptable [32]. In
the next section we transform M2BP to a set covering problem which is necessary
for the CG algorithm.

244 B.T. Han et al., Bin packing problems

SET COVERING PROBLEM FORMULATION

Let C denote the column index set and |C|, its cardinality. M2BP can be
written as a set covering problem (SCP) by using an N X |C| matrix A, in which
elements of A are denoted by a;;; a; =1 implies object i is packed in bin j. The
following resource constraint conditions must hold for each column of A:

Y, i <1,
ey

ie$

where t; gives the bin type for column j. The cost of column j is F,, the cost of the
bin type used for the column.

The SCP formulation is:

(SCP) mini;nize Z = E F, x;
JEC
subject to AX =1,

where X is an N x 1 column vector with elements x; €{0,1}, and 1 is an N x 1
column vector of 1’s.

Of course, if all possible feasible sets of objects (i.e. columns) are considered,
the SCP formulation can lead to extremely large problems*. However, by relaxing
the integrality constraint on the x; and employing a column generation approach
which implicitly considers all possible feasible columns, it is possible to obtain an
optimum or a near-optimum solution with sharp lower bound.

4. Description of algorithms

This section describes the three algorithms: a simple greedy heuristic called
First Fit by Ordered Deviation (FFOD), simulated annealing (SA), and column
generation (CG).

4.1. GREEDY HEURISTIC ALGORITHM -FFOD

The FFOD heuristic serves two purposes: to generate a solution which is an
end in itself or to provide an incumbent feasible solution whose value provides an
upper bound, Z;p, and a starting point for the SA or CG algorithm.

*A combinatorially large number of columns exist in even a moderate size problem. For example,
consider a problem with n=40. If, on the average, every bin has a capacity of 6, then there are

(41”)+(420)+...+(460)c0]umn5 (> 4.5 million) in SCP formulation.

B.T. Han et al., Bin packing problems 245

The FFOD sequentially considers objects and either assigns an object to an
existing bin or opens a new bin and assigns the object to that bin. The assignment
is based on minimum “opportunity cost”, defined as follows:
¥
5 : the type of bin j;

: the index set for all objects stored in bin j;

Pi=X ;. : the total dimension-1 resource demand on bin j;
J i€ Ejpti‘j J
Q;= Eiegjquj : the total dimension-2 resource demand on bin j:

0y : the adjusted resource demand if object i is assigned to bin j, i.e.,

| maximize[p;, gy, —(F; - Q)] if ;> Qy;
Y | maximizelg;,, , piu, —(Q; - F})] if Q; 2 P;.

The opportunity cost, c;;, for assigning object i to bin j is the product of its adjusted
resource demand, &; and F,, the fixed charge associated with the jth bin:

This definition of opportunity cost gives incentive to tightly pack objects into bins
while also maintaining the balance of resource loads on each bin.
The algorithm, followed by explanatory comments, appears below. $ is the

index set of opened bins.
Step 1. Initialize the solution upper bound Zyj < o
Step 2. Fork'=1to K

(2.1) Create vector R with elements |py- — g |/(pis + gy) fori=1to N

(2.2) Sort elements of R into nondecreasing order

(2.3) Reindex objects from 1 to N based on the element sequence in
array R

(2.4) Find k" such that ¢+ = ming coc 4
TC « F»
P {1} 1 ={1}; 1, =k
(2.5) Fori=2to N
(2.5.1) j* « 0; Find j* such that
cij»=minjeg{c; |(1 - P;) 2 Pz'rj,(l — ;= %j}
(2.5.2) Find k* such that ¢z = ming cor{cal1 2 pis 12 gy}
(2.3.3) Ifj =00r Ciy,, > it then
T T £ F
=131+ L $«3ulj); $p i} tp=Fk

246 B.T. Han et al., Bin packing problems

else $ ¢ P L (i}
(26) If TE < ZUB then ZUB «— TC
Step 3. Stop.

Steps 2.1 and 2.2 determine the packing order by sorting objects into
nondecreasing order of | py. — il /(pi — qir) (for given k), which reflects the balance
between the two resource demands. Thus, objects with higher balance of resource
demands are assigned first. To increase the chance of finding a good solution, the
packing is repeated K times, once for each bin type (step 2). To further increase
the probability of improving the solution value, the entire algorithm is repeated
sorting objects into nonincreasing order.

Step 2.4 finds the “best” bin to open for the first object and assigns it to that
bin.

Step 2.5.1 determines the cost of assigning object i to an open bin (if an open
bin exists with sufficient capacity).

Step 2.5.2 determines the cost of assigning object i to a newly opened bin.

Step 2.5.3 determines whether it is cheaper to assign object i to an existing
bin or open a new bin. If a new bin is opened, the total cost is updated, the index
set $ is expanded, and object i is assigned to that bin. If an existing bin is “cheaper”,
object i is assigned to the cheapest existing bin, j*.

Step 2.6 saves the best feasible solution value and, although not shown,
records the best solution.

The algorithm has a computational complexity O(cN), where ¢ is a constant
bounded above by the number of potential bins.

4.2. LOWER-BOUNDING ALGORITHM AND PROBLEM SIZE REDUCTION-LB

There are several objectives for this algorithm. First, there is the obvious
benefit of having a lower bound to solutions obtained by the approximate methods.
In addition, the efficiency of the SA search is sensitive to the size of the solution
space which is a function of the total number of bins of each type which must be
considered. In developing the lower bound, the LB algorithm also finds tight upper
bounds on the number of bins of each type.

Upper bounds on bins

Define U, as the number of bins of each type k. Using the solution upper
bound (Z;p) found by the heuristic, initial upper bounds are given by:

Uk = LZUB/FkJ VkeH.

The U, are now used in a linear relaxation of the mathematical program for M2BP:

B.T. Han et al., Bin packing problems 247

(M2BP/LP)

kel jEj‘k

subject to z 2 X = 1 Vi e 9, (4.1)
kel jed,

2 xijkpik < y_,'k Vj Ec?k’v‘k & 3‘{, (42)
ied

> X < Yix Vi e$i, Yk € XK, (4.3)
ie¥

Y v SUy Vk e %, (4.4)
Jjed

> Y By < Zys, (4.5)
keX jed,

0< x,»jk,yjk <1 VIE.SE,V] E}k,VkEg{,

minimize Z = 2 [Fk 2 yij

where $,={1,2,...,,U;}, VkeX, is an index set for type k bins. Constraint (4.4)
puts an upper limit on the number of bins of each type. The importance of constraint
(4.5) will become clear in the following discussion.

To (potentially) reduce a Uy, the objective function is replaced by max
Z = Y,c 3, The resulting “optimum” Z is then truncated to an integer to redefine
Uy; this new Uy is the maximum number of bins of type k in an optimum solution.
The revised U, replaces its previous value in (4.4). The process is repeated for each
value of k. M2BP/LP is solved a final time using its original objective function,
with all of the new U, values, to obtain an initial lower bound, Z; 5.

Based on computational experience, this algorithm typically reduces the original
problem size (i.e. Xic 5 U,) by 25% to 43%.

Lower bounding

After problem reduction, the following are available: (1) a feasible solution
with upper bound, Zyg; (2) a solution lower bound, Z; 5; and (3) upper limits, U,
on the number of bins of each type. Using this information, the set of potential bin
configurations—those configurations with cost less than Z,z—is determined. Each
potential configuration is then examined to determine if it is linearly feasible—that
is, if it will allow (potentially fractional) assignments of objects to bins without
violation of capacity constraints. The minimum cost of the feasible bin configurations
is the new lower bound.

A potential bin configuration is any mix of bin types whose total cost lies
between Z;5 and Zyg. For example, suppose three bin types, A, B, and C are
available with costs $10, $8, and $6, respectively, and the current lower and upper
bounds are $20 and $25, respectively. Then, one potential bin configuration is two

248 B.T. Han et al., Bin packing problems

of type B and one of type C; another potential configuration is one bin of each type.
However, one of type A and two of type B is not a potential bin configuration (cost
exceeds upper bound) nor is one of type A and one of type B (cost falls below
bound). Let the quadruplet (ny, ny, ns, TC) denote a specific bin configuration with
ny type 1 bins, n, type 2 bins, and a5 type 3 bins, and it incurs a total cost TC. If
we also assume that an upper limit of two bins of each type has been established,
then the potential bin configurations are limited to the following five:

1. (0, 1,2, $20)
2. (2,0,0,%20)
3. (0,2,1,$22)
4. (1,0,2,$22)
5. (1, 1,1,%24)

Typically, the number of potential bin configurations is less than 8% of the total
possible configurations based on the U (i.e.[T;cq (Up +1)-1).

The next step tests each configuration in order of increasing cost to determine
if i1t allows a feasible solution to M2BP/feasible (see below). The lowest cost
potential configuration which yields a feasible solution redefines Z;3.

(M2BP/feasible)
Z 2 x,-jk =] VI E ..{ﬁ,
keX jegt
Z XijePik <1 Vje$i, Vk e A,
ie¥
S, xyrgu <1 Vi e$y, Yk € K,
ied
Xijk <1 Vie ,9‘, V_] Egk,Vk e .

This step typically reduces the difference in upper and lower bound to about half
of its initial value. The increased lower bound also reduces search time in SA which
uses a stopping rule based on the difference between solution value and lower
bound. Of course, the lower bound can also be used to decide if the heuristic
solution is acceptable without further search. Finally, LB occasionally produces an
integer solution at value Z;5 which is, therefore, the optimum.

4.3. SIMULATED ANNEALING ALGORITHM-SA

Simulated annealing is a well-known global search technique for optimization
[41]. The following elements must be specified for SA. They are detailed in subsequent
subsections.

(1) Solution space, £, and solution state, S.

B.T. Han et al., Bin packing problems 249

(2) A state generation mechanism and the neighborhood size, Nj.
(3) An objective (energy) function, C(S).
(4) A cooling schedule, which includes:
(a) a starting temperature, T;
(b) a temperature decrement function, g(7);
(c) the final (frozen) temperature, 7, and/or other stopping criteria.

Solution space () and solution state (S)

The solution space, Q, is the set of all possible partitions of the N objects
into less than or equal to ¥, .qr Uy subsets and all possible assignments of bin types
to each subset within a partition. The partitions of Q are not constrained to those
partitions which allow only feasible subsets of objects (i.e. subsets of objects which
can be assigned to at least one of the available bin types without violating either
resource constraint). A solution state, S, is any partition. A subset of S is denoted
by s.

State generation mechanism and neighborhood structure

A one-way transfer scheme is used to generate a new solution state. Consider
a solution state S. The one-way transfer generates a new state by moving an object
from one bin to another or by moving an object to a new bin. All possible one-way
transfers from a given state define the neighborhood structure. Note again that no
feasibility checking is performed on the resultant packing.

This generation mechanism is adopted because of its simplicity and because
it yields a tractable neighborhood size. In a problem with N objects and a maximum
of B potential bins, the neighborhood size is Ny=N(B-1).

Objective (energy) function

To incorporate the capacity constraints, two penalty terms are added to the
objective function. The resulting energy function is:

min C(S) = min Fioy + @ max|1 - sy 1= it(s), 0
S0 () SeQ ‘ES‘ 1H(s) E: pzr(.s) ré ‘Lr(s)

+}3max Z Pit(s) — 1, E Git(s) —]’ 0 »

ies ies
where o and 3 are non-negative penalty parameters and #(s) gives the bin type for
subset s.

The term, amax(¢), penalizes unused resources in each bin and the term
Pmax(*) penalizes capacity violations. Replacing the constraints by penalty terms

250 B.T. Han et al., Bin packing problems

leads to a smoothing of the objective function “landscape”, making it easier for SA
to escape a local optimum. As reported by other researchers [37, 38], selection of
weighting factors is empirical and very problem dependent. “Tuning” led to setting
f to 0.30; the best choice for a seems to be 0.0-that is, no penalty for underfilling
a bin.

Cooling schedule

A cooling schedule includes: (1) the starting temperature, Ty; (2) a temperature
decrement function g(7); and (3) the final (i.e. frozen) temperature and/or some
other stopping criterion. The selection of cooling schedule impacts the performance
of SA. Considerable theoretical work has been done on cooling schedules [47, 48].
We adopt the cooling schedule by Aarts and van Laarhoven [2] for the following
reasons:

(1) It uses a simple mechanism to derive the starting temperature, T},

(2) It uses fixed-length Markov chains (i.e. number of state transitions per
temperature) to attain quasi-equilibrium at each temperature, which results in
polynomial-time convergence.

(3) It employs a stochastic temperature decrement function, g(T), which has
proven effective in locating near-optimum solutions.

Details of the cooling schedule follow.

Starting temperature—T,: The starting temperature is chosen to support a high
acceptance of all possible state transitions. 7 is determined by a search process.
We begin with an arbitrary value, ¢, and carry out 2N state transitions which yield
t* cost-increasing transitions and 7~ cost-decreasing transitions. Let AC* represent
the average cost increment over #* moves. The acceptance ratio,), ts approximated
by:
_[tTe(=ACT /D) +17]
& tt 4t)

Experience suggests that the initial temperature should yield an acceptance
ratio of about 0.90. Thus, if the computed ¢ exceeds 0.90, T, is decreased; otherwise,
Tj 1s increased. A binary search is used to determine the desired starting temperature
(see [1] for details).

Temperature decrement function—g(T): The temperature is updated by:

-
S CET)
(Bor)

8(T) =

B.T. Han et al., Bin packing problems 251

where o7y is the standard deviation of the objective function values over the number
of state transitions generated at temperature T and 0 is a distance parameter used
to determine the cooling rate. In general, choosing small & (around 1) leads to a
small decrement in T and results in a better quality solution. Selecting large &
(around 10) leads to rapid cooling and, usually, freezes with a poorer final solution.
We experimented with a range of 6 values finding that values close to 1 produced
unacceptably high solution times without significant improvement in solution quality.
Values near 10 produced quick, but poor, solutions. We finally settled on a value
of 5 which produced good solutions in acceptable time.

Final temperature and stopping criterion: Simulated annealing terminates at freezing
temperature, 7y, defined by first occurrence of:

_Tf |C(T)~ C(Ty_y)| iz
C(Ty) 4% ¥

where C(T;) is the average objective function value over the transitions generated
at T; E(Tf) and E(Tf_l) are moving averages of the objective function values over
the last 30 state transitions at temperatures 7y and T;_ respectively; g, the stopping
parameter, is set to 0.0005.

Unfortunately, the objective function is relatively bumpy making the stopping
condition somewhat ineffective. Therefore, one more stopping criterion was added:
SA terminates if the difference in upper and lower bounds, (Zyg — Z;3)/Z; 3, is less
than 5%.

Simulated annealing search

An outline of SA algorithm follows:

Step 1. Start with the best solution, S, with value, Z;p, from the FFOD heuristic.
Step 2. Determine the initial temperature T and cooling function g(T').
Step 3. T« Ty, S« S.
Step 4. Do until the temperature is frozen or the stopping criterion is met
(4.1) Repeat Np times
(1) Generate a random neighbor S’ of S, and compute A = C(S") — C(S)
(2) If A< O then S « §’
If S feasible then S* « S, Zyz « C(S*) end if
else
If Random ~ [0, 1) < exp(-A/T) then S « S’ end if
end if
4.2)T « g(T).
Step 5. Output S* and Zy;.

252 B.T. Han et al.,, Bin packing problems

4.4. COLUMN GENERATION ALGORITHM-CG

The exact algorithm uses the set covering formulation of section 3.2 with
column generation followed by branch-and-bound. The algorithm is outlined below
followed by details.

Step 1. Column generation phase

(1.1) Generate the initial set covering problem from the FFOD solution— the
“Restricted Master Program”, RMP. Solve RMP as a relaxed set-covering
problem.

(1.2) Repeat until no column can be generated with non-negative reduced
cost:

(1.2.1) For each bin type, use dual prices to generate a column—add
best to RMP.

(1.2.2) Solve expanded RMP
Step 2. If solution is all integer, terminate; else, perform branch and bound.

Generate initial restricted master program

The initial columns (i.e. bins) are determined by feasible solution from the
FFOD heuristic. A binary column, a;, of type f;, is created with cost coefficient F,
forge= 12 < o v &)

Solve the relaxed RMP
The relaxed RMP is:

(SCP) minimize Z = 2 F,x;
jeC
subject to dual multiplier
2 a,J,xJ = 1, TT; Vi e .g’,
jeC
0<% 51 VjeC.

Solution of the (relaxed) SCP yields two results. First, it may generate an integer
solution which then becomes the new incumbent or may “suggest” a better incumbent
(e.g. by rounding fractional results). Second, it produces dual multipliers which are
used for column generation.

Generate “best” column

The dual multiplier of row i (i.e. ;) represents the storage “price” of object
i given the current set of bins. To determine if a column not in the RMP should

B.T. Han et al., Bin packing problems 253

be added, its reduced cost is computed which is the difference between total prices
of the objects represented by the potential column and the fixed charge of its bin
type. The “best” potential columns - i.e. those with positive reduced cost — can be
determined by solving a series of two-constraint knapsack problems as follows:

Let

IT; : the maximum reduced cost over all feasible packings for a bin of type k.

;]
10 otherwise.

{1 if object / is assigned to the bin;

The best column (bin) is determined by solving the following problem, KP, for each
bin type. The decision variables, w;, Vi € $, from the best solution define the column
which will be added to the RMP.

(KP) II; = maximize Y, mw; - F
ief
subject to Z Pir@; =1,
ied
2 qix 0; =1
ied
w; €{0,1} Vied.

The fixed charge, Fj, is constant. Therefore, this problem is a multi-constraint
knapsack problem which can be solved by an algorithm developed by Gavish and
Pirkul [24].

If IT; is non-positive, Vk € ¥, then there are no potential added columns and
we are done—the continuous solution to the RMP is a lower bound to the incumbent.
If the solution is all-integer it is also the optimum; otherwise, a standard branch-
and-bound algorithm (LINDO) is used to solve the problem to optimality.

5. Computational results and analysis

The algorithms were coded in ForTraN using LINDO to solve LP subproblems
The computer was an IBM 3090.

TEST PROBLEM GENERATION

Test problems were generated based on computer storage device (bin) selection
and file (object) assignment problems described in the introduction to this paper and
detailed by Han and Diehr [33]. The actual cost and parameter generation is rather
involved; actual problem sets are available from the first author. General characteristics
of test problems are outlined below.

254 B.T. Han et al., Bin packing problems

(1) Device characteristics: Four storage types were considered: standard magnetic
disk (MD), erasable optical disk (EOD), and write-once/read-many (WORM) optical
disk with 30 and 60 day reorganization times. Amortized fixed costs per day (the F.)
are $10, $8, $7, and $6, for MD, EOD, WORM(30), and WORM(60), respectively.

Each device type has the same nominal storage capacity of 1. Performance
capacities, however, differ across the four device types due to differences in random
access times and transfer rates.

(2) File characteristics: Each file has two resource requirements, space and I/O,
both characterized by the fraction of device space and I/O capacity the file requires.
File space requirements, as a fraction of magnetic disk storage capacity, was randomly
generated from a uniform distribution over the range 0 to S (S < 1). I/O requirement
was randomly generated from an exponential distribution with mean u (again,
where is a fraction of total magnetic disk I/O capacity).

Resource requirements imposed by a given file on other, non-MD, device
types are, in general, greater than imposed on the MD. For example, since the
WORM does not support update in place, files stored on WORMS require additional
space for updated records. The greater the update rate for a file, the greater the space
which must be set aside on a WORM. Consider a file with size equal to 5% of MD
capacity and update rate of 1% per day. If stored on a WORM with 60 days between
reorganization, the file will grow by roughly 60%. Thus, the WORM space requirement
will be 8% of total WORM capacity. For the MD and EOD only 5% of device
capacity is required since both of these device types support update in place.

The I/O load imposed by a file also differs across devices. For example,
random access time on an EOD is on the order of 50 milliseconds versus only 20
milliseconds on an MD. Furthermore, to update a record stored on an MD typically
requires one disk read and one write. On the EOD, updates require at least one extra
rotation due to separate erase and write operations. However, transfer rates on an
EOD are comparable to the MD so that times for sequential file scans on the two
devices are similar. Therefore, the I/O load on each device is a function of device
characteristics and file I/O pattern (i.e. random versus sequential access and update
rate).

(3) Problem sets: Problem sets were characterized by number of files, average
file size (i.e. S/2), I/O load (value of w), and update rate as follows:

(a) Problem sizes were 30, 40, 50, 75, and 100 files.

(b) Average file sizes and average I/0 loads were 0.05, 0.1, and 0.2 —approximately,
an average of 20, 10, or 5 files per MD device (results in tables 1, 2, and
3, respectively.

(c) Daily file update rates were 1%, 2%, 3%, 4%, and 5%. As noted above, this
parameter differentially impacts space requirements and I/O requirements
across device types.

B.T. Han et al., Bin packing problems 255

Of the 75 possible combinations of these parameters, problems for 55
combinations were generated with 10 problems for each set of parameters.

COMPUTATIONAL RESULTS

Tables 1 -3 summarize results on 550 test problems for the four algorithms.
Each table corresponds to a different bin capacity/object size ratio—for example, the
files generated for table 2 have average (MD) file sizes equal to one-tenth of the
capacity of an MD. Problem sets within each table are organized by number of
objects (files) and within each size by file update rate. The column “M (bins)” gives
the average number of potential bins which were considered by the FFOD heuristic.
Data reported include CPU seconds on an IBM 3090 and “Gap”. For the heuristic
and SA, Gap is defined as the percentage difference in best solution value and the
optimum if known. If the optimum is not known, the best solution is compared to
the lower bound. For LB, the gap is compared to the optimum (if known) and to

Table 1

Solution quality and time: capacity/object size = 5.
(CPU time is IBM 3090 seconds)

Problem size Update FFOD algorithm SA algorithm LP bound CG algorithm
N (Objects) M (Bins) rate CPU time Gap (%) CPU time Gap (%) CPU time Gap (%) CPU time Range

30 8.2 1% 0.07 0.00 23.18 0.00 2.86 4.10 96 347

9.9 2% 0.07 1.10 40.55 0.00 423 5.22 84 264

11.0 3% 0.07 2.20 49.65 0.30 4.76 528 70 233

11.0 4% 0.07 4.70 50.21 0.60 5.78 3.74 68 256

116 5% 0.07 5.60 66.58 1.20 6.10 4.18 71 293

Average 10.3 0.07 2.72 46.03 0.42 4.75 4.50 79 278
40 11.3 1% 0.11 0.58 78.31 0.30 8.37 5.28 326 3706

162 2% 0.11 2.63 134.64 0.50 9.75 6.09 1013 3405

147 3% 0.11 1,67 103.39 0.50 15.08 4.98 340 1298

146 4% 0.11 3.76 74.79 1.20 14,24 4.02 243 1815

133 5% 0.11 2.27 53.84 0.70 18.74 3.46 124 864

Average 14.0 0.11 2.18 88.99 0.64 13.24 4.77 409 2218
50 172 1% 0.16 0.00 183.10 0.00 19.6 5.78 4790 10412

202 2% 0.16 0.38 239.23 0.40 18.12 6.73 4200 7458

190 3% 0.16 0.37 232.76 0.00 27.39 5.61 1944 5120

198 4% 0.16 2.54 232.47 0.40 18.73 5.86 996 5328

198 5% 0.16 251 181.17 0.00 26.45 4.32 1168 5376

Average 19.2 0.16 1.16 21375 0.16 22.03 5.66 2620 6739

Note: Solution gaps were computed using the optimum (Z") obtained from column generation (ie. (Zyp—Z*YZ"),
if available. Otherwise, the linear programming bound is used (i.e. (Zyz—Z; p)/Z;p).

256 B.T. Han et al., Bin packing problems

Table 2

Solution quality and time: capacity/object size = 10.
(CPU time is IBM 3090 seconds)

Problem size Update FFOD algorithm SA algorithm LP bound CG algorithm
N (Objects) M (Bins) rate CPU time Gap (%) CPU time Gap (%) CPU time Gap (%) CPU time Range

30 4.6 1% 0.06 5.00 2.20 0.70 0.60 0.00 115 295

46 2% 0.06 3.30 2.00 0.00 0.80 0.63 103 290

4.8 3% 0.06 2.20 6.97 0.00 1.00 3.75 123 463

4.6 4% 0.06 2.20 6.25 0.60 1.00 2.93 71 148

4.5 5% 0.06 3.10 T2 0.60 1.10 1.09 31 155

Average 4.6 0.06 3.16 5.03 0.38 0.90 1.68 89 270
40 5.8 1% 0.10 1.90 5.42 0.50 1.70 0.50 977 3351

6.4 2% 0.10 2.90 6.18 1.50 2.50 0.90 128 1934

6.6 3% 0.10 2.80 6.02 1.40 2.80 3.00 1122 2326

6.8 4% 0.10 4,70 3.05 1.40 2.90 1.70 1038 3114

6.8 5% 0.10 5.30 5.59 1.50 2.90 1.70 700 1816

Average 6.5 0.10 3.52 5.25 1.26 2.56 1.56 793 2508
50 6.4 1% 0.14 4.00 24.65 1.80 3.10 1.90 9705 13500

8.0 2% 0.15 5.80 16.78 2.40 3.70 2.30 6575 9536
78 3% 0.15 4.90 10.08 1.10 4.80 2.20 7244 9642

79 4% 0.15 6.40 16.41 0.80 5.20 1.40 8058 10786
74 5% 0.15 4.60 15.25 0.80 4.90 1.50 3558 9191
Average 7.5 0.15 5.14 16.63 1.38 4.34 1.86 7028 10531
75 107 1% 0.29 4.10 37.69 4.10 11.50
123 2% 0.30 5.30 64.04 5.30 13.70 Same
124 3% 0.30 5.40 52.50 4.80 14.10 as
13.0 4% 0.30 6.30 75.39 4.90 15.20 SA
128 5% 0.30 6.60 59.66 4.00 15.60 Gap
Average 12.2 0.30 5.54 57.86 4.62 14.02
100 173 1% 9.53 5.50 120.45 5.47 16.60
173 2% 0.53 4.60 62.48 4.57 20.20 Same
169 3% 0.54 4.80 131.61 4.68 24.10 as

169 4% 0.54 5.95 129.07 5.21 20.90 SA
16.7 5% 0.54 5.30 144.64 4.71 24.50 Gap

Average 17.0 0.54 523 117.65 4.93 21.26

the best known solution otherwise. CPU time for CG is shown as a range-—the
second lowest time to second highest time over the 10 problems in each group. This
approach is used instead of an average because of the high variation in solution
time.

B.T. Han et al., Bin packing problems 257

Table 3

Solution quality and time: capacity/object size = 20.
(CPU time is IBM 3090 seconds)

Problem size Update FFOD algorithm SA algorithm LP bound CG algorithm
N (Objects) M (Bins) rate CPU time Gap (%) CPU time Gap (%) CPU time Gap (%) CPU time Range
30 49 1% 0.06 3.04 2.26 0.00 0.33 0.90 61.2 124.3
44 2% 0.06 2.20 5.54 0.80 0.49 0.80 0.0 210.0
44 3% 0.06 0.77 3.16 0.80 0.04 0.00 0.2 193.3
43 4% 0.06 571 3.40 0.70 0.80 0.00 0.1 153.6
4.6 5% 0.06 7.71 3.81 0.00 0.90 0.75 0.5 169.8
Average 4.5 0.06 3.89 3.63 0.46 0.51 12.4 170.3
40 4.1 1% 0.10 0.71 3.34 0.71 0.76
4.1 2% 0.10 2.86 4.98 0.71 1.25 Same
45 3% 0.10 4.95 16.74 3.50 1:35 as
49 4% 0.10 7.58 18.82 3.50 1.61 SA
49 5% 0.10 4.58 18.18 3.30 173 Gap
Average 4.5 0.10 4.14 12.41 2.34 1.34
50 46 1% 0.14 4.46 23.42 321 2:50
5.4 2% 0.14 8.25 28.08 4.82 2.14 Same
60 3% 0.14 6.83 19.88 1.80 2.67 as
58 4% 0.14 5.98 13.86 1.70 2.79 SA
56 5% 0.14 8.15 27.29 3.38 291 Gap
Average 5.5 0.14 6.73 22.51 2.98 272

FFOD heuristic performance

The quality of the solution is quite good; the overall average solution deviated
by about 3% from the optimum (where available) and by about 5.4% from the lower
bound when the optimum was unavailable. Performance tends to be better on problems
where the bin capacity/object size ratio is smaller.

The heuristic is very fast—mo problem took over 1 second. Solution time
increases with (slightly less than) the square of the number of objects. Recall that
one “run” of the heuristic involves repeating the bin selection and file assignment
process 2K times. The fast solution time suggests that the optimum might be found
more often if the process were repeated a larger number of times using alternative
orderings of the objects. Initial experimentation suggests that this is a very good idea.

Simulated annealing performance

SA was able to significantly improve the FFOD solution in the vast majority
of problems. The average gap versus the optimum was reduced to about 0.6%; the

258 B.T. Han et al., Bin packing problems

gap versus the lower bound, when the optimum was not available, was 3.7%. As
might be expected, SA performance tends to be better on problems where the bin
capacity/object size ratio is smaller. On problems where the optimum is known, SA
found the optimum in all but 17 of the 150 problems solved in table 1 where
capacity/size ratio is 5; in table 2, with capacity/size ratio 10, the optimum was not
found in 28 of 150 problems. We suspect that in problems with relatively larger
number of bins it is easier for SA to open (and close) bins thus making it less likely
that SA will become stuck on a local optimum.

The better solutions came at significant increase in computation time over the
FFOD heuristic, ranging from about 50 over 1000 times longer. As expected, increased
number of objects increases solution time; solution time increases with roughly the
cube of N. While the capacity/size ratio has almost no impact on FFOD solution
time, it has an impact on solution time for SA. While problems of equal number
of objects in table 2 and 3 were solved at about the same speed, further decrease
in bin size (table 1) resulted in a dramatic increase in solution time.

If we consider the relationships between capacity/size ratio, solution time,
and solution quality a clear pattern emerges: on problems where SA spent relatively
more time, that is, on the problem sets with lower capacity/size ratio, better solutions
were found. This suggests that better solutions may be available on the problems
with larger bins if (say) the cooling schedule were modified for more gradual
cooling. Such speculation must, however, be confounded by the fact that the starting
solution from FFOD was generally better with smaller capacity/size ratio.

LB performance

The average gap over all problems solved to optimality is just under 3%.
However, the sharpness of the bound is clearly a function of problem characteristics:
the problems in table 1, where more bins are required due to low capacity/size ratio,
have the poorest bounds—an average of about 5%. In table 2, where fewer bins are
used, the average gap was only 1.7%. We believe that the poorer bounds in table 1
problems are easily explained by the larger number of bins which allow for more
fractional assignments of objects.

Bounding time is, of course, a function of N, the number of bins in each
feasible configuration, and the number of feasible configurations which must be
solved. Thus, table 1 problems took more time than comparable problems in table 2
which, in turn, took longer than problems in table 3.

CG performance

Our objective in using the column-generation/branch-and-bound algorithm
was primarily to validate solutions of FFOD and SA and the bounds from LB.
Problems as large as 50 objects were solved to optimality by CG but at significant
computing cost in many instances. In addition, solution time had very high variance

B.T. Han et al., Bin packing problems 259

as tabled results show. Since we began with the FFOD solution and the LP lower
bound, problems in which FFOD’s solution was already verified optimal by the
lower bound did not require any time in CG. That fact accounted for the very low
times seen at the low-end of the CPU time range for a few problems.

6. Summary and concluding remarks

(1) Of the methods tested, the simple FFOD heuristic coupled with the linear
programming-based lower bounding scheme appear to be the most useful and most
promising. The heuristic is so fast that it can easily be applied repeatedly, using
different orderings of object, to increase the chance of finding the optimum or a
near-optimum solution. Experimentation is underway to evaluate the impacts of
repeatedly running FFOD with random orderings of objects and other variations in
the algorithm. Results are promising.

The lower bound is tight enough to provide a satisfactory “comfort level”
with the heuristic solution for most practical problems.

(2) Simulated annealing results are mixed. While it typically provides improved
solutions over a few iterations of the FFOD heuristic, the computation time runs
to minutes instead of seconds. In addition, if SA is run without invoking the “gap < 5%”
stopping rule, an even higher proportion of better solutions (versus FFOD) are
found but at an even greater computing cost. There may exist other cooling schedules,
neighborhood definitions, or “energy functions” which could improve the performance
of SA and/or reduce its solution time.

Whether or not to use SA on a real problem comes down to an issue of cost-
effectiveness—cost of computation versus savings possible in an improved solution.
For those problems where a reduction in cost of a percent or so means large dollar
savings, then we would recommend that SA be run unless the FFOD:LB gap is quite
small. In situations where “quick-and-dirty” solutions are needed rapidly and frequently,
or where solutions are needed for very large problems, the heuristic is probably the
best choice.

Further research is underway on this special problem. In addition to modifications
to the heuristic and simulated annealing methods, we are also developing an algorithm
based on tabu search [29]. Other research includes algorithms based on a “Boltzmann
machine” (i.e. simulated neural net) [1]. We also find the subproblem of section 4.2,
that is, determining if a given bin configuration allows a feasible assignment of
objects, quite intriguing. Are there quick methods, for example, which can be used
to establish that a given set of bins does not support a feasible assignment?

Acknowledgements

This research was supported in part by a CBE Summer Research Stipend
provided by College of Business and Economics at Washington State University.

260

B.T. Han et al., Bin packing problems

We would like to thank Dr. Hasan Pirkul for allowing us to use his optimization
code for solving multi-constraint knapsack problems. Two anonymous referees
provided very careful and comprehensive reviews and many helpful suggestions.
Their contributions are highly appreciated.

References

(1]
(2]

[3]

(4]
[5]

[6]
[7]

[3]
19]

[10]
[11]
[12]
[13]
[14]
[15]

[16]

(17]
[18]
[19]

[20]
(21]

[22]

E.H.L. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines (Wiley, 1989).
E.H.L. Aarts and P.].M. van Laarhoven, Statistical cooling: A general approach to combinatorial
problems, Phillips J. Res. 40(1985)193-226.

AV. Aho, LE. Hopcroft and 1.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison—Wesley, Reading, MA, 1974) chapter 10.

E. Appleton and D.J. Williams, Industrial Robot Applications (Wiley, New York, 1987) chapter 3.
B.S. Baker, E.G. Coffman and R.L. Rivest, Orthogonal packings in two dimensions, SIAM J.
Comp. 9(1980)846—855.

B.S. Baker, D.J. Brown and H.P. Katseff, A 5/4 algorithm for two-dimensional bin packing, J.
Algor. 2(1981)348—-368.

B.S. Baker and I.S. Schwarz, Shelf algorithms for two-dimensional packing problems, SIAM J.
Comp. 12(1983)508-525.

M. Ball and M. Magazine, The design and analysis of heuristics, Networks 11(1981)215-219.
I.J. Bartholdi III, J.H. Vande Vate and J. Zhang, Expected performance of the shelf heuristic for
2-dimensional packing, Oper. Res. Lett. 8(1989)11-16.

S.P. Bradley, A.C. Hax and T.L.. Magnanti, Applied Mathematical Programming (Addison—Wesley,
1977) chapter 12.

D.J. Brown, B.S. Baker and H.P. Katseff, Lower bounds for on-line two-dimensional packing
algorithms, Acta Inf. 18(1982)207-225.

F.R.K. Chung, M.R. Garey and D.S. Johnson, On packing two-dimensional bins, SIAM J. Alg.
Discr. Methods 3(1982)66—76.

B. Chazelle, The bottom-left bin-packing heuristic: An efficient implementation, IEEE Trans.
Comp. C-32(1983)697-707.

E.G. Codd, Multiprogramming scheduling, Commun. ACM, Parts 1 and 2(1960)347—350; Parts 3
and 4 (1960) 413-418.

E.G. Coffman, M.R. Garey, D.S. Johnson and R.E. Tarjan, Performance bounds for level-oriented
two-dimensional packing algorithms, SIAM J. Comp. 9(1980)808-826.

E.G. Coffman, M.R. Garey and D.S. Johnson, Approximation algorithms for bin-packing —an updated
survey, in: Algorithm Design for Computer System Design, ed. G. Ausiello, M. Luccertini and
P. Serafini (Springer, Vienna, 1984) pp. 49-106.

J. Cook and B.T. Han, Optimal robot selection and work station assignment for a CIM system, IEEE
Trans. Robotics and Automation (February, 1994), to appear.

D. Coppersmith and P. Raghavan, Multidimensional on-line bin packing: algorithms and worst-case
analysis, Oper. Res. Lett. 8(1989)17-20.

G. Cornuejols, R. Sridharan and J.M. Thizy, A comparison of heuristics and relaxations for the
capacitated plant location problem, Eur. J. Oper. Res. 50(1991)280-297.

K.A. Dowsland and W.B. Dowsland, Packing problems, Eur. J. Oper. Res. 56(1992)2—14.

M.L. Fisher, The Lagrangian relaxation method for solving integer programming problem, Manag.
Sci. 27(1981)1-18.

W. Fernandez de la Vega and G.S. Lueker, Bin packing can be solved within 1 + £ in linear time,
Combinatorica 1(1981)349-355.

B.T. Han et al., Bin packing problems 261

[23] M.R. Garcy, R.L. Graham, D.S. Johnson and A.C.C. Yao, Resource constrained scheduling as
generalized bin packing, J. Comb. Theory (A) 21(1976)257—298.

[24] B. Gavish and H. Pirkul, Efficient algorithms for solving multiconstraint zero—one knapsack
problems to optimality, Math. Progr. 31(1985)78-105.

[25] A. Geoffrion and R. McBride, Lagrangian relaxation applied to capacitated facility location problems,
AIIE Trans. 10(1978)40—47.

[26] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem,
Oper. Res. 9(1961)849-859.

[27] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem—
Part II, Oper. Res. 11(1963)863—888.

[28] P.C. Gilmore and R.E. Gomory, Multistage cutting stock problems of two and more dimensions,
Oper. Res. 13(1965)94-120.

[29] F. Glover, Tabu search: a tutorial, Interfaces 20(1990)74—-94.

[30] F. Glover and R. Hubscher, Bin packing with tabu search, Graduate School of Business and
Administration, University of Colorado at Boulder (1991).

[31] 1. Golan, Performance bounds for orthogonal oriented two-dimensional packing algorithms, SIAM
J. Comp. 10(1981)571-582.

[32] B.T. Han and G. Diehr, An algorithm for device selection and file assignment, Eur. J. Oper. Res.
61(1992)326-344,

[33] B.T. Han, Optimal file management for a storage system using magnetic and optical disks, Inf.
Dec. Technol., to appear.

[34] M. Hofri, Two-dimensional packing: Expected performance of simple level algorithms, Inf. Control
45(1980)1-17.

[35] W.H. Inmon, EIS and data warehouse, Database Progr. Design (November, 1992)70-73.

[36] D.S. Johnson, Fast algorithms for bin packing, J. Comp. Syst. Sci. 8(1974)272-314.

[37] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, Optimazion by simulated annealing:
An experimental evaluation: Part I, Graph partitioning, Oper. Res. 37(1989)865—892.

[38] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, Optimization by simulated annealing:
An experimental evaluation: Part II, Graph coloring and number partitioning, Oper. Res. 39(1991)
378-406.

[39] T. Kampke, Simulated annealing: Use of a new tool in bin packing, Ann Oper. Res. 16(1988)
327-332.

[40] N. Karmarkar and R.M. Karp, The differential method of set partitioning, Report UCB/CSD
82/113, Computer Science Division, University of California, Berkeley, California 94720 (1982).

[41] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science
220(1983)671-680.

[42] B. O’Connell, Reinventing data management, DEC Professional (February, 1993)40—-45.

[43] W.T. Rhee and M. Talagrand, Multidimensional optimal bin packing with items of random size,
Math. Oper. Res. 16(1991)490-503.

[44] 5.C. Sarin and W.E. Wilhelm, Prototype models for two-dimensional layout design of robot
systems, [IE Trans. 16(1984)206-215.

[45] D. Sleator, A 2.5 times optimal algorithm for packing in two dimensions, Inf. Proc. Lett. 10(1980)
37-40.

[46] 1.D. Ullman, Complexity of sequencing problems, in: Computer and Job-shop Scheduling Theory,
ed. E.G. Coffman, Ir. (Wiley, New York, 1975).

[47] P.J.M. van Laarhoven, Theoretical and Computational Aspects of Simulated Annealing, Centre for
Mathematics and Computer Science, Amsterdam, The Netherlands (1988).

[48] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications (Kluwer
Academic, Boston, MA, 1988).

[49] A.C.C. Yao, New algorithms for bin packing, J. ACM 27(1980)207-227.

